Databases

@ :; 9

/ : Professor: Nathan Abourbih\

Data Types

A column’s data type specifies the kind of information the column is intended to
store.

In addition, a column’s data type determines the operations that can be

Character

Numerng

Date and time

Large Object (LOB) Large strings of character or binary data

Spatial
JSON

Strings of character data

Numbers that don’t include a decimal point (integers) and
numbers that include a decimal F'.n;'ninl (real numbers)

Dates, times, or both

Geographical values

JSON documents

performed on the column. n

Introduction to Data Types

Date and time data types are intended for storing
dates, times, or both dates and times.

Introduction to Data Types

At a basic level, you can divide numbers
into two categories:

Integers are numbers that don’t have a decimal point

Introduction to Data Types

Numbers that point are known as integers.
Numbers that point are known as real numbers.
The data types are often referred to as the date/time or

temporal data types.

The (LOB) data types are useful for storing images, sound, video,
and large amounts of text.

The data types are useful for storing geometric or geographical values
such as global positioning system (GPS) data. These data types are referred to
as geometry types.

The data type is used for storing JavaScript Object Notation (JSON)
documents.

| Category Description

Character Strings of character data

Numeric Numbers that don’t include a decimal point (integers) and
numbers that include a decimal point (real numbers)

Date and time Dates, times, or both

Large Object (LOB) Large strings of character or binary data
Spatial Geographical values

JSON JSON documents

Character Types

VARCHAR (M)

L+1

Description

Fixed-length strings of character data where M is the number of
characters, between 0 and 255. With the utf8mb4 character set,
MySQL must reserve four bytes for each character in a CHAR
column because that’s the maximum possible length.

Variable-length strings of character data where M is the maxi-
mum number of characters, between 0 and 255. For English and
Latin characters, the number of bytes used to store the string is
equal to length of the string (L) plus 1 byte to record its length.

' Data type

| CHAR(2)
CHAR(10)
VARCHAR(10)
VARCHAR (20)
VARCHAR(20)
VARCHAR(20)

Original value

{] CA i

] CA 1

1 CA "

'California’
'New York'
"Murach's MySQL"

Value stored

"CA!

'CA

"CA'
'California’
'New York'
"Murach's MySQL"

Character Types

Bytes used

Cha I'a Cte I SetS When a column is defined with a string type such as
CHAR or VARCHAR, MySQL stores a numeric value for
each character.

The utf8mb3/utf8mb4 character sets are is the default
for MySQL and are often referred to as just utf8. 4

Description

latinl The latin] character set uses one byte per character to provide for most characters in
Western European languages.

utf8mb3 The utf8mb3 character set uses one to three bytes per character to provide for all
characters specified by the Unicode character set. This character set provides for most
characters in most of the world’s languages.
The utf8mb4 character set uses one to four bytes per character to provide for all char-
acters specified by the Unicode character set, plus additional characters like emojis.

Integer Types

The integer types store numbers without any digits to the right of the decimal
point.

Type Bytes Value ranges

Signed: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Unsigned: 0 to 18,446,744,073,709,551,615

INT Signed: -2,147,483,648 to 2,147,483,647
Unsigned: 0 to 4,294,967,295

MEDIUMINT Signed: -8,388,608 Sto 8,388,607
Unsigned: 0 and 16,777,215

SMALLINT Signed: -32,768 and 32,767
Unsigned: 0 and 65,535

TINYINT Signed: -128 and 127
Unsigned: 0 and 255

Integer Types — Signed VS Unsigned

Data type Original value Value stored Value displayed
INT

INT

INT UNSIGNED

INT UNSIGNED

Integer Types — Zero Fill

Data type Original value Value stored Value displayed
INT ZEROFILL 99 99 0000000099

INT(4) ZEROFILL 29 99 0099

Real Numbers - Exact

DECIMAL(max_digits, decimals)
Type Bytes Description

DECIMAL(M, D) ar Fixed-precision numbers where M specifies the maximum number
of total digits (the precision) and D specifies the number of digits

to the right of the decimal (the scale). M can range from 1 to 65. D
can range from 0 to 30 but can’t be larger than M. The default is 0.

If the UNSIGNED attribute for a real number is set, it prevents storing negative values in the column but does
not affect the range of acceptable values

Real Numbers — Floating-Point

Type Bytes Description

Double-precision floating-point numbers from -1.7976x10°* to 1.7976x10°®.

Single-precision floating-point numbers from -3.4028x10* to 3.4028x10.

For business applications, you typically use the exact numeric types, as there’s seldom the
need to work with the very large and very small numbers that the floating-point data types
are designed for. However, for scientific applications, you may sometimes need to use the
DOUBLE and FLOAT types.

Date/Time Types

| Type

TIME

DATETIME

TIMESTAMP

YEAR[(4)]

Bytes

Description

Dates from January 1, 1000 through December 31, 9999. The
default format for display and entry is “yyyy-mm-dd”.

Times 1n the range -838:59:59 through 838:59:59. The default
format for display and entry is “hh:mm:ss”.

Combination date and time from midnight January 1, 1970 to
December 31, 9999. The default format for display and entry
is “yyyy-mm-dd hh:mm:ss™.

Combination date and time from midnight January 1, 1970 to
the year 2037. The default format is “yyyy-mm-dd hh:mm:ss”.

Years in 4-digit format. Allowable values are from 1901 to
2155,

DatE/Tl me Inte 'p retation Literal value Value stored in DATE column

'2018-08-15" 2018-08-15

'2018-8-15" 2018-08-15

'18-8-15" 2018-08-15

'20180815" 2018-08-15
You can specify date and time values by coding a literal

. . 20180815 2018-08-15
value. In most cases, you enclose the literal value in
single quotes. 12018.08.15"' 2018-08-15

'18/8/15" 2018-08-15
For dates, MySQL uses the “yyyy-mm-dd” format. For . ;
times, MySQL uses the “hh:mm:ss” format, using a 24- 8/15/18 None
hour clock. '2018-02-31" None

If you don’t specify a time when storing a DATETIME Literal value Value stored in TIME column
or TIMESTAMP value, MySQL stores a time value of '7:32" 07:32:00

00:00:00 (12:00 midnight). 119:32:11" 19:32:11

1193211 19:32:11
193211 =211

119:61:11" None

Literal value Value stored in DATETIME or TIMESTAMP column

12018-08-15 19:32:11" 2018-08-15 19:32:11
'2018-08-15" 2018-08-15 00:00:00

ENUM and SET

Type

Bytes Description

Stores one value selected from a list of acceptable values.

'Yes'

lNo!
'Maybe'
'Possibly’

Stores zero or more values selected from a list of acceptable values.

Stored in column
ENUM ('Yes', 'No', 'Maybe')

Value

'Pepperoni'’
'"Mushrooms '
'Pepperoni, Bacon'

'Olives, Pepperoni'

Stored in column

SET ('Pepperoni’, 'Mushrooms', 'Olives')

'Pepperoni’
'Mushrooms'
' Pepperoni’

'Pepperoni,

Olives'

ENUM and SET Details

® The and types can be used to restrict the values that you store to a limited set of values.
The ENUM column can take on exactly one value, but a SET column can take on zero, one, or up to
64 different values.

® You can define the set of acceptable values for an or column when you create a table. An
column can have up to 65,535 acceptable values, but a column is limited to 64 acceptable
values.
® To specify a value for an column, you code a single text string. If the string contains an
acceptable value, that value is stored in the column. Otherwise, the column is assigned an empty
string.
® If you don't specify a value for an column when you insert a row, MySQL assigns a default

value that depends on whether the column allows null values. If the column allows null values,
MySQL assigns a null value to the column. If it doesn't allow null values, MySQL assigns the first
value in the set of acceptable values to the column.

® To specify values for a column, you code a single string with the values separated by commas.
Each acceptable value is stored in the column, and any other values are ignored.

® When you store values in a column, MySQL stores the values using the order specified in the
column definition, and it does not store duplicate values.

Large Object Types

Type
LONGBLOB
MEDIUMBLOB
BLOB
TINYBLOB

LONGTEXT
MEDIUMTEXT
TEXT
TINYTEXT

Bytes

Description

Variable-length strings of binary data up to 4GB in length (L).
Variable-length strings of binary data up to 16MB in length (L).
Variable-length strings of binary data up to 65KB in length (L).

Variable-length strings of binary data up to 255 bytes in length (L).

Variable-length strings of characters up to 4GB in length (L).
Variable-length strings of characters up to 16MB in length (L).

Variable-length strings of characters up to 65KB in length (L).

Variable-length strings of characters up to 255 bytes in length (L).

The BLOB types store strings of binary data and are referred to as binary large object

(BLOB) types.

Implicitly convert a number to a string
SELECT
invoice total
, CONCAT('%', invoice_ total)
FROM

invoices

Implicitly convert a string to a number
SELECT

invoice number

, 989319/invoice_number

FROM

invoices

Implicitly convert a date to a humber
SELECT
invoice date,
invoice date + 1
FROM

invoices

>

invoice_total CONCAT('$, invoice_total)

3813.33 $3813.33
40.20 $40.20

4

invoice_number 989319/invoice_number
989319-457 1

263253241 0.0037580505988908225
963253234 0.0010270601385803393

14

invoice_date invoice_date + 1

2014-04-08 20140409
2014-04-10 20140411

The syntax of the CAST function

CAST (expression AS cast_type)

The syntax of the CONVERT function

CONVERT (expression, cast_type)

Cast types you can use in these functions
CHARI (N)]
DATE
DATETIME
TIME
SIGNED [INTEGER]
UNSIGNED [INTEGER]
DECIMAL[(M[,D])]

a

A statement that uses the CAST function

SELECT
invoice_id invoice_date invoice_total
1 2014-04-08 3813.33
2 2014-04-10 40.20
3 2014-04-13 138.75

invoice_id)

, invoice_ date

char_date

2014-04-08
2014-04-10
2014-04-13

integer_total
3813

40

139

A

, invoice total
s, CAST(invoice_date AS CHAR(18)) AS char_date
, CAST(invoice_total AS SIGNED) AS integer total

FROM
involces

A statement that uses the CONVERT function

-

invoice_id invoice_date invoice_total

SELECT
invoice id P |1 2014-04-08 3813.33
2 201404-10 40.20

, 1nvoice date
3 2014-04-13 138.75

char_date

2014-04-08
2014-04-10
2014-04-13

integer_total
3813

40

139

invoice total
CONVERT(invoice date, CHAR(18)) AS char date

CONVERT(invoice total, SIGNED) AS integer total

4
4

.
FROM

involces

The FORMAT and CHAR functions

FORMAT (number, decimal)
CHAR (valuel[,value2]...)

FORMAT function examples

Function Result
FORMAT (1234567.8901, 2) 1,234,567.89
FORMAT (1234.56,4) 1,234.5600
FORMAT (1234.56, 0) 1,235

Function Description

FORMAT (number,decimal) Converts the specified number to a character string
with grouped digits separated by commas, rounded to
the specified number of decimal digits. If decimal is
zero, then the decimal point is omitted.

CHAR (valuel[,value2]...) Converts one or more numbers to a binary string. Each
number is interpreted as an integer between 0 and 255.

CHAR function examples for common
control characters

Function Control character

CHAR (9) Tab

CHAR (10) Line feed

CHAR (13) Carriage return

SELECT
CONCAT(
vendor_name, CHAR(13,10
, vendor_addressl, CHAR(13,10)
, vendor_city, ', ', vendor_ state, ' ', vendor zip code
)
FROM 7S Postal Service
vendors Attn: Supt. Window Services
WHERE Madison, WI 53707

vendor_id = 1;

MYSQL — DATA TYPES

Write a SELECT statement that returns these columns from the Invoices
table:

The invoice total column

A column that uses the FORMAT function to return the invoice_total

column with 1 digit to the right of the decimal point

A column that uses the CONVERT function to return the invoice_total
column as an integer

A column that uses the CAST function to return the invoice_total column

ds an llltﬂgﬂl' invoice_total total_format total_convert total _cast

3813.33 3,813.3 3813 3813
40,20 40.2 40 40
133.73 133.8 139 139
144,70 144.7 145
15,50 15.5 16
42,75 42.8 43
172,50 172.5

2,

MYSQL — DATA TYPES

Write a SELECT statement that returns these columns from the Invoices

table:
The 1nvoice _date column

A column that uses the CAST function to return the invoice_date column
with its full date and time
A column that uses the CAST function to return the invoice_date column
with just the year and the month

invoice_date
2013-08-02
2013-08-01
2018-07-31
2015-07-30
2013-07-28
2013-07-25

invoice_datetime

2013-08-02 00:00:00
2013-08-01 00:00:00
2018-07-31 00:00:00
2018-07-30 00:00:00
2013-07-28 00:00:00
2018-07-25 00:00:00

invoice_char
2013-08
2013-08
2015-07
2013-07
2013-07
2013-07

Write a SQL query that satisfies the requirements below.

SELECT
product id AS id

« Use the database my_guitar_shop. ’ pr‘:::dm:t_name AS name

» SELECT the rows from the products table. , 1i st pr ice AS pr ice
 Return a resultset that matches the results shown below.

Requirements

, discount percent as discount

Results FROM
products

name price discount UH D E H E Y

Gibson 5G 2517.00 52.00

Gibson Les Paul 1199.00 30.00 1iStJJF"‘iEE DESC
Fender Predsion 799.99 30.00

Tama 5-Fiece Drum Set with Cymbals 799,99 15.00

Ludwig 5-piece Drum Set with Cymbals £99.99 30.00

Fender Stratocaster 699,00 30.00

Hofner Icon 499,99 25.00

Yamaha FGT005 439,99 38.00

Rodriguez Caballero 11 415,00 359.00

Washburn D105 299,00 0.00

Write a SQL query that satisfies the requirements below.

Requirements

Results

Use the database my_guitar_shop.

SELECT the rows from the customers table.

Only include customers that have a last name that starts with a
hattar of the alphabet that comes after the letter N.

Return a resultset that matches the results shown below.

SELECT

FROM

customers
customer_name
Zimmer, Barry WHERE
Wilson, Frank Lee

last name > "N’
Valentino, Erin -
Sherwood, Allan ORDER BY

last name DESC

CONCAT(last name, ', first name) AS customer name

Write a SQL query that satisfies the requirements below.

Requirements

Use the database my_guitar_shop.

SELECT the rows from the products table.

Only include products that have a list price between seven
hundred and fifty dollars and fifteen hundred dollars.
Return a resultset that matches the results shown below.

Results

name added price
b | Gibson Les Paul 2011-12-05 16:33:13 1199.00
Fender Precision 2012-06-01 11:29:35 799.99
Tama 5-Fiece Drum Set with Cymbals 2012-07-30 1314115 799,99

SELECT
product name AS name
, date added AS added
» list price AS price
FROM
products
WHERE
list price BETWEEN /750 AND 15600
ORDER BY
date added ASC

Write a SQL query that satisfies the requirements below.

Requirements SELECT

product name AS 'Product Name'
Use the database my_guitar_shop. » list price AS ‘List Price
SELECT the rows from the products table. F
Return the following columns and data: AS 'Discount Percent'
° product name The product_name column. ROUND(1list price * discount percent * .01, 2)
> list price The list_price column| s . .
o discount percent The discount_percent column. AS “Discount Amount
o discount amount A column that's calculated from the previous two columns.
o discount price A column that's calculated from the previous three columns. AS 'Discount
Round the discount amount and discount price columns to 2 decimal places. FROM
Sort the resultset by discount price in ascending sequence.
Use the LIMIT clause so the result set contains only the first 6 rows. products

ORDER BY

Return a resultset that matches the results shown below.
"Discount Price” ASC

LIMIT &

discount percent

list price - ROUND(list price * discount_percent * .01,

ric

Results

Product Name Discount Discount Di_scc-unt
Percent Amount Price
Rodriguez Caballero 11 39,00 151,85 253,15
Washburn D105 0.00 0.00 299,00
‘Yamaha FG7005 38.00 136.20 303.79
Hofner Icon 25.00 125.00 374.99
Fender Stratocaster 30,00 209,70 439,30
Ludwig 5-piece Drum Set with Cymbals 30,00 210.00 439,99

Write a SQL query that satisfies the requirements below.

SELECT
order _id AS

» customer id AS

Requirements

"Order’

« Use the database my_guitar_shop. Customer
» SELECT the rows from the orders table. ' Amount
MU L

« Return a resultset that matches the results shown below.

d Date'

» ship amount AS
» order_date AS
» ship date AS

"Ordere

Results Shipped Dat

Order

Custormer

Amount
5.00
5.00
10,00
5.00
5.00
15.00

Ordered Date

2012-03-28 09:40:28
2012-03-28 11:23:20
2012-03-29 09:44: 58
2012-03-30 15:22:31
2012-03-3105:43:11
2012-04-01 23:11:12

Shipped Date

2012-03-30 15:32:51
2012-03-29 12:52:14
2012-03-3109:11:41
2012-04-03 16:32:21
2012-04-02 14:21:12
2012-04-03 10:21:35

FROM
orders
WHERE

ship date IS NOT NULL

Write a SQL query that satisfies the requirements below.

Requirements

Use the database my_guitar_shop.

SELECT the rows from the orders table.
The second column should make use of the date format function.

Return a resultset that matches the results shown below.

Results SELECT

Order Date
Order Date ;;.r. E;;E;E:
28-Mar-2012
28-Mar-2012
29-Mar-2012

30-Mar-2012 FROM

31-Mar-2012

31-Mar-2012 or d ers

1-Apr-2012
2-Apr-2012
2012-04-03 12:22:31 3-Apr-2012

