
IOT 1026
Object Oriented Programming

Week 9 – Class 1

Manmeet Singh Duggal

8th July 2025

Important Dates

• Applied Activity #4 is due today (Jul. 8th).

This week…

• Interfaces

Interface

• An interface is also used for the abstraction of data

• Interfaces are fully abstract classes (all methods have empty
bodies)

• This means that they:
• cannot have any data fields

• cannot have any non-abstract members

• all methods must be abstract

• cannot have a constructor

• Interface members are by default public and abstract

Interface

• If you want to access an interface’s methods, you need to
implement the interface

• Implementation uses the same notation “ : ” as inheritance.

Dog : IAnimal

• But when you implement an interface’s method you don’t need the
keywork “override”

• All Interface methods bodies must be included in the class that
implements the interface

• Like Abstract classes, interfaces can’t be be made into instances
(objects)

Interface
interface IAnimal{

void makeNoise();

}

//interface names usually start with ‘I’
//default public abstract

//Cat class implements IAnimal interface (not inherits)
class Cat : IAnimal{

public void makeNoise(){ //doesn’t use override
Console.WriteLine(“Meow!”);

}

}

class Dog : IAnimal{
public void makeNoise(){ //doesn’t use override

Console.WriteLine(“Woof! Woof! Woof!”);
}

}

Interface - Why use an interfaces?

• 1) Similar role as abstract classes. To improve security by hiding
certain details of an object.

• 2) In C#, a class can only inherit from one base class. However, it
can implement multiple interfaces and achieve the same goal.
Note: To implement multiple interfaces, separate them with a
comma. E.g. Cat : IAnimal, IAlive

Base
Class

Base
Class

Derived
Class

Base
Class

Interface

Derived
Class

Base
Class

Derived
Class

multiple inheritance single inheritance inheritance & implementation

Live Codding

UML – Shape Abstract Class

Shape

x : double
y : double

+ Move(double, double) : void
+ Perimeter() : double
+ Area() : double

Inheritance “is-a”

(Abstract) Base class

Circle

- radius : double

+ Circle():
+ Perimeter() : double
+ Area() : double

Derived class

Rectangle

- length : double
- width : double

+ Rectangle():
+ Perimeter() : double
+ Area() : double

Derived class

Inheritance “is-a”

UML – Shape Base Class & Measurable Interface

IMeasurable

+ Perimeter() : double
+ Area() : double

Interface

Implementation/
Realization

Shape

x : double
y : double

+ Move(double, double) : void

Base class

Inheritance “is-a”

Inheritance “is-a”

Implementation/
Realization

Circle

- radius : double

+ Circle():
+ Perimeter() : double
+ Area() : double

Derived class

Rectangle

- length : double
- width : double

+ Rectangle():
+ Perimeter() : double
+ Area() : double

Derived class

	Slide 1: IOT 1026 Object Oriented Programming
	Slide 2: Important Dates
	Slide 3: This week…
	Slide 4: Interface
	Slide 5: Interface
	Slide 6: Interface
	Slide 7: Interface - Why use an interfaces?
	Slide 8: Live Codding
	Slide 9: UML – Shape Abstract Class
	Slide 10: UML – Shape Base Class & Measurable Interface

